Kamis, 29 September 2011

SLR


SLR

Kamera refleks lensa tunggal‎ (Bahasa Inggris: Single-lens reflex (SLR) camera) adalah kamera yang menggunakan sistem jajaran lensa jalur tunggal untuk melewatkan berkas cahaya menuju ke dua tempat, yaitu Focal Plane dan Viewfinder, sehingga memungkinkan fotografer untuk dapat melihat objek melalui kamera yang sama persis seperti hasil fotonya. Hal ini berbeda dengan kamera non-SLR, dimana pandangan yang terlihat di viewfinder bisa jadi berbeda dengan apa yang ditangkap di film, karena kamera jenis ini menggunakan jajaran lensa ganda, 1 untuk melewatkan berkas cahaya ke Viewfinder, dan jajaran lensa yang lain untuk melewatkan berkas cahaya ke Focal Plane.
Kamera SLR menggunakan pentaprisma yang ditempatkan di atas jalur optikal melalui lensa ke lempengan film. Cahaya yang masuk kemudian dipantulkan ke atas oleh kaca cermin pantul dan mengenai pentaprisma. Pentaprisma kemudian memantulkan cahaya beberapa kali hingga mengenai jendela bidik. Saat tombol dilepaskan, kaca membuka jalan bagi cahaya sehingga cahaya dapat langsung mengenai film.

KomponenKamera SLR

Pembidik

Salah satu bagian yang penting pada kamera adalah pembidik (viewfinder). Ada dua sistem bidikan, yaitu:
  • jendela bidik yang terpisah dari lensa (Viewfinder type)
  • bidikan lewat lensa (Reflex type).
Kamera SLR, sesuai dengan namanya (Single Lens Reflex), menggunakan sistem bidikan jenis kedua. Mata fotografer melihat subjek melalui lensa, sehingga tidak terjadi parallax, yaitu keadaan dimana fotografer tidak melihat secara akurat indikasi keberadaan subjek melalui lensa sehingga ada bagian yang hilang ketika foto dicetak. Keadaan parallax ini pada dasarnya terjadi pada pemotretan sangat close up dengan menggunakan kamera viewfinder.


Jendela Bidik

Jendela bidik merupakan sebuah kaca yang di dalamnya tercantum banyak informasi dalam pemotretan. Jendela bidik memuat penemu jarak (range-finder), pilihan diafragma, shutter speed, dan pencahayaan (exposure).


Lensa

Dalam fotografi, lensa berfungsi untuk memokuskan cahaya hingga mampu membakar medium penangkap (film). Di bagian luar lensa biasanya terdapat tiga cincin, yaitu cincin panjang fokus (untuk lensa jenis variabel), cincin diafragma, dan cincin fokus.


Macam-macam lensa

  • Lensa Standar. Lensa ini disebut juga lensa normal. Berukuran 50 mm dan memberikan karakter bidikan natural.
  • Lensa Sudut-Lebar (Wide Angle Lens). Lensa jenis ini dapat digunakan untuk menangkap subjek yang luas dalam ruang sempit. Karakter lensa ini adalah membuat subjek lebih kecil daripada ukuran sebenarnya. Dengan menggunakan lensa jenis ini, di dalam ruangan kita dapat memotret lebih banyak orang yang berjejer jika dibandingkan dengan lensa standar. Semakin pendek jarak fokusnya, maka semakin lebar pandangannya. Ukuran lensa ini beragan mulai dari 17 mm, 24 mm, 28 mm, dan 35 mm.
  • Lensa Fish Eye. Lensa fish eye adalah lensa wide angle dengan diameter 14 mm, 15 mm, dan 16 mm. Lensa ini memberikan pandangan 180 derajat. Gambar yang dihasilkan melengkung.
  • Lensa Tele. Lensa Tele merupakan kebalikan Lensa wide angle. Fungsi lensa ini adalah untuk mendekatkan subjek, namun mempersempit sudut pandang. Yang termasuk lensa tele adalah lensa berukuran 70 mm ke atas. Karena sudut pandangannya sempit, lensa tele akan mengaburkan lapangan sekitarnya. Namun hal ini tidak menjadi masalah karena lensa tele memang digunakan untuk mendekatkan pandangan dan memfokuskan pada subjek tertentu.
  • Lensa Zoom. Merupakan gabungan antara lensa standar, lensa wide angle, dan lesa tele. Ukuran lensa tidak fixed, misalnya 80-200 mm. Lensa ini cukup fleksibel dan memiliki range lensa yang cukup lebar. Oleh karena itu lensa zoom banyak digunakan, sebab pemakai tinggal memutar ukuran lensa sesuai dengan yang dibutuhkan.
  • Lensa Makro. Lensa Makro biasa digunakan untuk memotret benda yang kecil.


Fokus

Fokus adalah bagian yang mengatur jarak ketajaman lensa, sehingga gambar yang dihasilkan tidak berbayang.


Kecepatan rana

Kecepatan rana (shutter speed) artinya penutup (to shut = menutup). Pada waktu kita menekan tombol untuk memotret, terjadi pembukaan lensa sehingga cahaya masuk dan mengenai film. Pekerjaan shutter adalah membuka dan kemudian menutup lagi.
Kecepatan Rana adalah kecepatan shutter membuka dan menutup kembali. Shutter speed dapat kita atur. Jika kita memilih 1/100, maka ia akan membuka selama 1/100 detik.
Skala shutter speed bervariasi. Ada yang B, 1, ½, ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000, dst. Mulai dari ½ sampai 1/1000 biasanya hanya disebut angka-angka dibawah saja. Artinya 100 = 1/100 dan 2 artinya ½ detik. Namun jika angka 2 itu berwarna, maka artinya adalah 2 detik.
Sedangkan B artinya bulb, yaitu jika tombol ditekan maka shutter membuka, dan ketika tombol dilepaskan maka shutter menutup.
Yang perlu diingat adalah, semakin lama kecepatan shutter, jumlah cahaya yang masuk akan semakin banyak. Semakin besar angkanya, maka kecepatan shutter akan semakin tinggi(shutter akan semakin cepat membuka dan menutup).
  • Speed cepat
Speed cepat kita gunakan untuk memotret benda yang bergerak. Semakin cepat pergerakan benda tersebut, maka semakin besar angka speed shutter yang kita butuhkan.
  • Speed lambat
Jika benda yang bergerak cepat dipotret dengan speed shutter rendah, maka hasilnya ialah gambar akan tampak kabur, seakan-akan disapu, namun latar belakangnya jelas. Efek ini kadang-kadang bagus dan menimbulkan sense of motion dari benda yang dipotret.
Cara lain adalah dengan menggerakkan kamera ke arah gerak objek (panning) bertepatan dengan melepas tombol. Hasil gambarnya ialah latar belakang kabur, tetapi gambar subjek jelas. Seberapa jelas atau kaburnya subjek tergantung pada cepat atau lambatnya gerakan panning. Jika gerakannya bersama-sama dengan gerakan subjek, maka gambar yang dihasilkan jelas. Sebaliknya jika kamera lebih cepat atau lebih lambat dari gerakan subjek, maka hasilnya akan blur (kabur).

Diafragma

Diafragma atau aperture (atau sering disebut bukaan) berfungsi untuk mengatur jumlah volume cahaya yang masuk. Alat ini biasanya terdapat di belakang lensa. Terdiri dari 5-8 lempengan logam yang tersusun dan dapat membuka lebih lebar atau lebih sempit.
Penulisan angka diafragma biasanya adalah f/2, f/2.8, f/4, f/5.6, f/8, f/11, dan f/16, dst. Semakin kecil angka diafragma, maka bukaan yang dihasilkan akan semakin lebar sehingga cahaya yang masuk semakin banyak.
  • Bukaan besar
Bukaan diafragma yang besar digunakan untuk menghasilkan foto dengan subjek yang tajam dengan latar belakang blur.
  • Bukaan kecil
Bukaan kecil akan menghasilkan gambar yang tajam mulai dari foreground hingga background. Bukaan kecil biasanya digunakan dalam pemotertan landscape yang memang membutuhkan detail dan ketajaman di selurh bagian foto.
Contoh dari salah satu SLR beserta Penjelasannya
Sumber Artikel : wikipedia.org
Sumber Gambar : Google.co.id


Jumat, 23 September 2011

Komputer Generasi Keenam


Generasi Keenam




Komputer generasi ke-6,masa mendatang Dengan Teknologi Komputer yang ada saat ini,agak sulit untuk dapat membayangkan bagaimana komputer masa depan.Dengan teknologi yang ada saat ini saja kita seakan sudah dapat “menggenggam dunia”.Dari sisi teknologi beberapa ilmuwan komputer meyakini suatu saat tercipta apa yang disebut dengan biochip yang dibuat dari bahan protein sitetis.Robot yang dibuat dengan bahan ini kelak akan menjadi manusia tiruan.Sedangkan teknologi yang sedang dalam tahap penelitian sekarang ini yaitu mikrooptik serta input-output audio yang mungkin digunakan oleh komputer yang akan datang.Ahli-ahli sains komputer sekarang juga sedang mencoba merancang komputer yang tidak memerlukan penulisan dan pembuatan program oleh pengguna.Komputer tanpa program (programless computer) ini mungkin membentuk ciri utama generasi komputer yang akan datang.





Komputer Generasi Kelima


Generasi Kelima


Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001: Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence atau AI), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapa komputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhana. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertian manusia sangat bergantung pada konteks dan pengertian ketimbang sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang desain komputer dan teknologi yang semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model non Neumann. Model non Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia.

Komputer Generasi Keempat


Generasi Keempat


Setelah IC, tujuan pengembangan menjadi lebih jelas: mengecilkan ukuran sirkuit dan komponen-komponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.
Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukurang setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan keterandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap piranti rumah tangga seperti microwave, oven, televisi, dan mobil dengan electronic fuel injection (EFI) dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.
Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena memopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga memopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat.
Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensial terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputer-komputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Jaringan komputer memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga Local Area Network atau LAN), atau [kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.

Komputer Generasi Ketiga


Generasi Ketiga

Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC : integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Pada ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponen-komponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.